O Futuro da AI é Luminoso (e analógico)

Para concluir a Rápida Introdução à ‘Inteligência Artificial’, publico o post complementar, para apresentar o inovador chip ótico [ainda sem nome comercial] da start-up Lightmatter, contendo o chamado interferômetro Mach-Zehnderque, que promete elevar a computação de sistemas de aprendizagem de máquinas a um novo patamar.

Imagem: iStock

O aprendizado de máquina profundo, ou seja, redes neurais artificiais com muitas camadas ocultas, sempre nos fascina com soluções inovadoras para problemas do mundo real, cada vez em mais áreas, incluindo processamento de linguagem natural, detecção de fraude, reconhecimento de imagem e direção autônoma. As redes neurais ficam melhores a cada dia.

Mas esses avanços têm um preço enorme nos recursos de computação e no consumo de energia. Portanto, não é de se admirar que engenheiros e cientistas da computação estejam fazendo grandes esforços para descobrir maneiras de treinar e operar redes neurais profundas com mais eficiência.

Uma nova e ambiciosa estratégia que está fazendo o ‘début’ este ano é executar a computação de redes neurais usando fótons em vez de elétrons. A Lightmatter começará a comercializar no final deste ano seu chip acelerador de rede neural que calcula com luz. Será um refinamento do protótipo do chip Mars que a empresa exibiu em agosto passado.

O protótipo MARS, instalado em uma placa

Embora o desenvolvimento de um acelerador ótico comercial para aprendizado profundo seja uma conquista notável, a ideia geral de ‘computação com luz’ não é nova. Os engenheiros empregavam regularmente essa tática nas décadas de 1960 e 1970, quando os computadores digitais eletrônicos ainda não tinham capacidade para realizar cálculos complexos. Assim, os dados eram processados no domínio analógico, usando luz.

Em virtude dos ganhos da Lei de Moore na eletrônica digital, a computação óptica nunca realmente pegou, apesar da ascensão da luz [fibras óticas] como veículo para comunicação de dados. Mas tudo isso pode estar prestes a mudar: a Lei de Moore, que durante décadas proporcionou aumentos exponenciais na capacidade dos chips eletrônicos, mostra sinais de estar chegando ao fim, ao mesmo tempo em que as demandas da computação de aprendizado profundo estão explodindo.

Não há muitas escolhas para lidar com esse problema. Pesquisadores de aprendizagem profunda podem até desenvolver algoritmos mais eficientes, mas é difícil prever se esses ganhos serão suficientes. Essa é a razão da Lightmatter estar empenhada em “desenvolver uma nova tecnologia de computação que não dependa do transistor”.

Fundamentos

O componente fundamental no chip Lightmatter é um interferômetro Mach-Zehnder. Esse dispositivo ótico foi inventado em conjunto por Ludwig Mach e Ludwig Zehnder na década de 1890. Mas só recentemente esses dispositivos óticos foram miniaturizados a ponto de um grande número deles poder ser integrado em um chip e usado para realizar as multiplicações de matrizes envolvidas nos cálculos de rede neural.

O interferômetro Mach-Zehnder é um dispositivo usado para determinar as variações relativas de deslocamento de fase entre dois feixes colimados derivados da divisão da luz de uma única fonte. É um dispositivo particularmente simples para demonstrar interferência por divisão de amplitude. Um feixe de luz é primeiro dividido em duas partes por um divisor de feixe e, em seguida, recombinado por um segundo divisor de feixe. Dependendo da fase relativa adquirida pelo feixe ao longo dos dois caminhos, o segundo divisor de feixe refletirá o feixe com eficiência entre 0 e 100%. – Gráfico: Vox Leone – Uso Permitido

Esses feitos só se tornaram possíveis nos últimos anos devido ao amadurecimento do ecossistema de manufatura de fotônica integrada, necessário para fazer chips fotônicos para comunicações.

O processamento de sinais analógicos transportados pela luz reduz os custos de energia e aumenta a velocidade dos cálculos, mas a precisão pode não corresponder ao que é possível no domínio digital. O sistema é 8-bits-equivalente. Isso por enquanto mantém o chip restrito a cálculos de inferência de rede neural – aqueles que são realizados depois que a rede foi treinada.

Os desenvolvedores do sistema esperam que sua tecnologia possa um dia ser aplicada também ao treinamento de redes neurais. O treinamento exige mais precisão do que o processador ótico pode fornecer nesta etapa.

A Lightmatter não está sozinha em busca da luz para cálculos de redes neurais. Outras startups que trabalham nesta linha são Fathom Computing, LightIntelligence, LightOn, Luminous e Optalysis.

A Luminous espera desenvolver sistemas práticos em algum momento entre 2022 e 2025. Portanto, ainda teremos que esperar alguns anos para ver como essa abordagem vai evoluir. Mas muitos estão entusiasmados com as perspectivas, incluindo Bill Gates, um dos maiores investidores da empresa.

Uma coisa é clara: os recursos de computação dedicados aos sistemas de inteligência artificial não podem continuar a crescer sustentavelmente na taxa atual, dobrando a cada três ou quatro meses. Os engenheiros estão ansiosos para utilizar a fotônica integrada para enfrentar esse desafio de construir uma nova classe de máquinas de computação drasticamente diferentes daquelas baseadas nos chips eletrônicos convencionais, que agora se tornam viáveis para fabricação. São dispositivos que no passado recente só podiam ser imaginados.

Uma (muito) Rápida Introdução à ‘Inteligência Artificial’

O poder de computação ao alcance das pessoas começou a crescer rapidamente, aos trancos e barrancos, na virada do milênio, quando as unidades de processamento gráfico (GPUs) começaram a ser aproveitadas para cálculos não gráficos, uma tendência que se tornou cada vez mais difundida na última década. Mas as demandas da computação de “Aprendizado Profundo” [Deep Learning] têm aumentado ainda mais rápido. Essa dinâmica estimulou os engenheiros a desenvolver aceleradores de hardware voltados especificamente para o aprendizado profundo [o que se conhece popularmente como ‘Inteligência Artificial’], sendo a Unidade de Processamento de Tensor (TPU) do Google um excelente exemplo.

Ainda não temos uma Teoria da Mente, que possa nos dar uma base para a construção de uma verdadeira inteligência senciente. Aqui a distinção entre as disciplinas que formam o campo da Inteligência Artificial

Aqui, descreverei resumidamente o processo geral do aprendizado de máquina, introduzindo uma abordagem muito diferente para este problema – o uso de processadores óticos para realizar a computação de uma rede neural com fótons em vez de elétrons, que será objeto do próximo post. Para entender como a ótica pode impulsionar este campo, precisamos saber um pouco sobre como os computadores executam cálculos de redes neurais.

Visão geral

Quase invariavelmente, os neurônios artificiais são ‘construídos’ [na verdade eles são virtuais] usando um software especial executado em algum tipo de computador eletrônico digital.

Esse software fornece a um determinado neurônio da rede várias entradas e uma saída. O estado de cada neurônio depende da soma ponderada de suas entradas, à qual uma função não linear, chamada função de ativação, é aplicada. O resultado, a saída desse neurônio, torna-se então uma entrada para vários outros neurônios, em um processo em cascata.

As camadas de neurônios interagem entre si. Cada círculo representa um neurônio, em uma visão muito esquemática. À esquerda (em amarelo) a camada de entrada. Ao centro, em azul e verde, as camadas ocultas, que refinam os dados, aplicando pesos variados a cada neurônio. À direita, em vermelho, a camada de saída, com o resultado final.

Por questões de eficiência computacional, esses neurônios são agrupados em camadas, com neurônios conectados apenas a neurônios em camadas adjacentes. A vantagem de organizar as coisas dessa maneira, ao invés de permitir conexões entre quaisquer dois neurônios, é que isso permite que certos truques matemáticos de álgebra linear sejam usados ​​para acelerar os cálculos.

Embora os cálculos de álgebra linear não sejam toda a história, eles são a parte mais exigente do aprendizado profundo em termos de computação, principalmente à medida que o tamanho das redes aumenta. Isso é verdadeiro para ambas as fases do aprendizado de máquina:

  • O treinamento – processo de determinar quais pesos aplicar às entradas de cada neurônio.
  • A inferência – processo deflagrado quando a rede neural está fornecendo os resultados desejados.
Concepção do processo de treinamento de máquina, dos dados brutos, à esquerda, ao modelo completo.

Matrizes

O que são esses misteriosos cálculos de álgebra linear? Na verdade eles não são tão complicados. Eles envolvem operações com matrizes, que são apenas arranjos retangulares de números – planilhas, se preferir, menos os cabeçalhos de coluna descritivos que você encontra em um arquivo Excel típico.

É bom que as coisas sejam assim, porque o hardware de um computador moderno é otimizado exatamente para operações com matriz, que sempre foram o pão com manteiga da computação de alto desempenho – muito antes de o aprendizado de máquina se tornar popular. Os cálculos matriciais relevantes para o aprendizado profundo se resumem essencialmente a um grande número de operações de multiplicação e acumulação, em que pares de números são multiplicados entre si e seus produtos somados.

Ao longo dos anos, o aprendizado profundo foi exigindo um número cada vez maior dessas operações de multiplicação e acumulação. Considere LeNet, uma rede neural pioneira, projetada para fazer classificação de imagens. Em 1998, demonstrou superar o desempenho de outras técnicas de máquina para reconhecer letras e numerais manuscritos. Mas em 2012 o AlexNet, uma rede neural que processava cerca de 1.600 vezes mais operações de multiplicação e acumulação do que o LeNet, foi capaz de reconhecer milhares de diferentes tipos de objetos em imagens.

Gráfico tridimensional ilustrando o processo de inferência, partindo de dados brutos dispersos (embaixo à direita) até o refinamento final (após muitas iterações de inferência), onde o resultado (ou predição) é obtido.

Aliviar a pegada de CO2

Avançar do sucesso inicial do LeNet para o AlexNet exigiu quase 11 duplicações do desempenho de computação. Durante os 14 anos que se passaram, a lei de Moore ditava grande parte desse aumento. O desafio tem sido manter essa tendência agora que a lei de Moore dá sinais de que está perdendo força. A solução de sempre é simplesmente injetar mais recursos – tempo, dinheiro e energia – no problema.

Como resultado, o treinamento das grandes redes neurais tem deixado uma pegada ambiental significativa. Um estudo de 2019 descobriu, por exemplo, que o treinamento de um determinado tipo de rede neural profunda para o processamento de linguagem natural emite cinco vezes mais CO2 do que um automóvel durante toda a sua vida útil.

Os aprimoramentos nos computadores eletrônicos digitais com certeza permitiram que o aprendizado profundo florescesse. Mas isso não significa que a única maneira de realizar cálculos de redes neurais seja necessariamente através dessas máquinas. Décadas atrás, quando os computadores digitais ainda eram relativamente primitivos, os engenheiros lidavam com cálculos difíceis como esses usando computadores analógicos.

À medida que a eletrônica digital evoluiu, esses computadores analógicos foram sendo deixados de lado. Mas pode ser hora de seguir essa estratégia mais uma vez, em particular nestes tempos em que cálculos analógicos podem ser feitos oticamente de forma natural.

No próximo post vou trazer o mais recente desenvolvimento em fotônica aplicada ao aprendizado de máquina – em uma arquitetura analógica! Estamos, sem dúvida, vivendo tempos interessantes neste campo promissor.

Fonte de pesquisa: spectrum.ieee.org