A.I. Art – Meus Experimentos com o Incrível ‘Stable Diffusion’

Se você não está prestando atenção ao que está acontecendo com o súbito aparecimento da Difusão Estável, você está perdendo um momento realmente interessante na história da tecnologia.

Imagem: Pexels.com

Tudo começou quando há dez dias, em 22 de agosto, a start-up Stability.ai abriu o código-fonte de sua plataforma de síntese de imagem chamada Stable Diffusion – uma arquitetura de difusão latente semelhante ao DALL-E 2 do OpenAI e ao Imagen do Google, treinada com milhões de imagens extraídas da web. Desde então a tecnologia tem desfrutado uma contínua explosão de interesse.

Ao contrário do conteúdo deepfake baseado em autoencoder, ou das recriações da figura humana que podem ser alcançadas por Neural Radiance Fields (NeRF) e Generative Adversarial Networks (GANs), os sistemas baseados em difusão aprendem a gerar novas imagens adicionando ruído às imagens usadas como fontes. A reiteração desse processo ensina o sistema como fazer imagens plausíveis – e até foto-realistas – a partir apenas desse ruído.

Modelos baseados em difusão aprendem a reconstruir fotos adicionando ruído a imagens “não contaminadas” e observando a relação elas e a imagem “contaminada” à medida que mais ruído é adicionado. Imagem: Google

Com a repetição do processo, o modelo começa a entender as “relações latentes” entre fontes altamente difusas e suas versões nítidas e de maior resolução. Depois de bem treinado, um modelo de difusão latente do tipo “texto-para-imagem” pode então “recuperar” imagens, separando-as do ruído de base usando prompts de texto como guias para quais elementos recuperar.

Em apenas alguns dias, houve uma explosão de inovação em torno deste processo. As coisas que as pessoas estão criando são absolutamente surpreendentes.

Tenho acompanhado o subreddit r/StableDiffusion e seguido o fundador da Stability, Emad Mostaque, no Twitter.

Minhas experiências

No início desta semana eu comecei a fazer experimentos com a tecnologia. O mínimo que posso dizer é que gerar imagens a partir de texto é um jogo totalmente novo.

Com os modelos “texto-para-imagem”, as habilidades linguísticas adquirem muita importância, à medida que a precisão conceitual na composição do chamado “prompt” vai determinar o resultado final do trabalho. No estágio atual da tecnologia, o prompt deve ser composto em inglês. Eu suponho que uma interface em português vai surgir em algum momento – farei minha contribuição na medida do possível.

Minhas explorações mostradas aqui foram feitas na plataforma online beta.dreamstudio.ai (atualmente grátis). A conta no site permite a geração de 200 imagens, antes de começar a monetizar. Já existem muitos outros sites parecidos, e novos aparecem todo dia.

Canalizei meu Roger Dean interior e comecei a esboçar algumas coisas. Depois de uma manhã eu já tinha uma pequena coleção para curtir e mostrar:

  • Um Sonho de São Paulo

Eu gosto do estilo matte paint, e minha primeira ideia foi investigar como São Paulo apareceria como um cenário a la Blade Runner.

Um sonho de São Paulo
Prompt usado: A dream of Sao Paulo city, Caspar David Friedrich, matte painting, artstation HQ

No prompt eu estabeleço alguns parâmetros/atributos que eu gostaria que a imagem tivesse:

Dream, indicando uma atmosfera onírica; São Paulo city, o objeto central, Caspar Friedrich, replicando o estilo do artista homólogo, Matte painting, para dar a textura, Artstation HQ, para invocar o estilo do studio Artstation [games, mídia].

  • São Paulo Dream

Neste ponto o leitor já percebeu que eu gosto de São Paulo e curto uma atmosfera onírica, com elementos pós-apocalípticos.

    Prompt Usado: A dream of Sao Paulo, a distant galaxy, Caspar David Friedrich, matte painting, trending on artstation HQ
    • Nave Alien Gigante
    Prompt usado: gigantic extraterrestrial futuristic alien ship in brand new condition, not ruins, hyper-detailed, artstation trending, world renowned artists, antique renewal, good contrast, realistic color, cgsociety, greg rutkowski, gustave dore, Deviantart
    • Roma Alienígena
    Prompt usado: Julius Caesar, alien roman historic works, ruins, hyper-detailed, world renowned artists, historic artworks society, good contrast, realistic color, cgsociety, Greg Rutkowski, Deviantart
    • Um Rio de Janeiro de Sonho
    Prompt usado: Rio de Janeiro, fuzzy, dreamy, world renowned artists, good contrast, pastel color, Greg Rutkowski, Deviantart
    • Rio Hipgnosis

    Aqui eu tentei replicar o estilo do já citado Roger Dean, e do estúdio Hipgnosis, famoso pelas capas de discos das grande bandas de rock nos anos setenta, como Yes, Pink Floyd, Led Zeppelin, e muitos outros. Note a silhueta do Pão de Açúcar, quase imperceptível. Definitivamente Lisérgico.

    Prompt usado: Rio de Janeiro, sketchy, dreamy, world renowned artists, good contrast, pastel color, Roger Dean, Hipgnosis
    • Transilvania

    Aqui eu recebi o valoroso input de minha mulher, ligada ao mundo das bruxas e das brumas, que sempre me apoia em minhas desventuras digitais. A ideia era fazer Drácula aparecer no cenário, mas vejo que será preciso maior empenho na engenharia do prompt.

    Prompt usado (composto por Marília Gião): Dracula castle on a mountain, at dusk, matte paint, Transylvania dream, David Friedrich, chariots with horses, hyper detailed, deviantart

    É mesmo uma coisa incrível. Imagine ter um artista conceitual multi habilidoso ao seu dispor, cujo único propósito na existência é interagir com você e materializar suas fantasias visuais mais loucas. Tudo a um custo muito baixo.

    Você pode executar a difusão estável em seu próprio computador, em um ambiente virtual python, se tiver as inclinações técnicas para configurá-lo [é preciso placa gráfica compatível com CUDA – tipicamente Nvidia] . Posso dar algumas indicações nos comentários, se alguém tiver interesse. Em serviços online como Replicate ou Hugging Face você pode ainda usar a biblioteca “imagem-para-imagem” – que está chegando também à interface do DreamStudio que usamos aqui.

    Há muito mais acontecendo. A melhor descrição que vi até agora de um processo iterativo para construir uma imagem usando Stable Diffusion vem de Andy Salerno: 4.2 Gigabytes, ou: Como desenhar qualquer coisa. Nestes experimentos eu usei partes dos prompts de Andy.

    E há muito mais por vir.

    As inescapáveis questões éticas

    As questões éticas levantadas por esses sistemas precisam ser enfrentadas e resolvidas. São questões difíceis.

    A difusão estável foi treinada com milhões de imagens extraídas da web. Essas imagens são protegidas por direitos autorais. Não estou qualificado para falar sobre a legalidade disso. Pessoalmente, estou mais preocupado com a moralidade.

    O Stable Diffusion v1 Model Card tem todos os detalhes de especificação, mas para resumir, ele usa um conjunto de dados LAION-5B (5,85 bilhões de pares de imagem-texto) e seu subconjunto Laion-aesthetics v2 5+ (um conjunto de aproximadamente 600 Milhões de pares). Essas imagens foram retiradas da web.

    O modelo final tem cerca de 4,2 GB de dados – um blob binário de “floating points”. O fato de se poder comprimir uma quantidade tão grande de informação visual em um volume tão pequeno é, em si, um feito fascinante. Contudo, de novo, as pessoas que criaram essas imagens não foram consultadas sobre seu consentimento.

    Para além disso, como já como discutimos no blog em outra postagem [link], o modelo pode ser visto como uma ameaça direta ao meio de subsistência de milhões de profissionais pelo mundo afora. Eu mesmo fui um desenhista ilustrador em meu primeiro emprego. Hoje eu não teria chance de começar. O vídeo e o áudio seguirão o mesmo caminho. Ninguém esperava que as IAs criativas viessem tão rapidamente para ceifar os empregos dos artistas, mas aqui estamos!

    Há também implicações [negativas] para o mercado de arte — e, em breve, do fonográfico, além do cinema.

    Nasce uma Nova profissão: a Engenharia de Prompt

    Como tentei mostrar, e como você mesma(o) pode verificar se resolver praticar a técnica no link que forneci, o background pessoal influenciará muito no sucesso. As pessoas que vão exercer essa atividade em um nível profissional elevado nas agências de criação terão que se aprofundar na observação e no estudo da linguagem.

    Além da precisão linguística, os parâmetros envolvidos na composição do prompt, para um resultado artístico perfeitamente controlado, exigem conhecimento técnico, senso de estilo e conhecimento histórico. Quanto mais palavras-chave relacionadas estiverem envolvidas na composição maior será o controle do artista sobre o resultado final. Exemplo: o prompt

    Uma cidade futurista distante, cheia de prédios altos dentro de uma enorme cúpula de vidro transparente, No meio de um deserto árido cheio de grandes dunas, Raios de sol, Artstation, Céu escuro cheio de estrelas com um sol brilhante, Escala maciça, Neblina, Muito detalhado, Cinematográfico, Colorido

    é mais sofisticado do que simplesmente

    Uma cidade cheia de prédios altos dentro de uma enorme cúpula de vidro transparente

    Note que a densidade conceitual, portanto a qualidade, do prompt depende muito do background cultural e linguístico da pessoa que faz a composição. De fato, um prompt de qualidade se assemelha muito a uma cena de cinema descrita em um roteiro/storyboard [a propósito, lá se vão os Production Designers, junto com os concept artists, graphic designers, set designers, costume designers, lighting designers…].

    Na tentativa de monetizar os frutos da nova tecnologia, os empreendedores da Internet serão forçados pela mão invisível do mercado de trabalho a se aprofundar nos conhecimentos linguísticos. Será um efeito colateral benigno, penso eu, considerando estado atual da Internet. Talvez isso leve a uma melhor articulação das ideias no ambiente da rede.

    Assim como influenciadores do YouTube têm talento para lidar com os aspectos visuais das interações humanas, os aspirantes à engenharia de prompt terão que se destacar em farejar as nuances da expressão humana. Eles têm grande potencial para ser os novos profissionais descolados da economia digital, assim como foram os web designers, e depois os influencers — que, com o fim das redes sociais, agora tendem a perder relevância.

    Para se diferenciar, os engenheiros de prompt terão que ser ávidos leitores e praticantes de semiótica/semiologia.

    Umberto Eco e os estruturalistas poderão voltar à moda.

    Indistinguível da magia

    Apenas alguns meses atrás, se eu tivesse visto alguém criar essas imagens em um programa de TV, ou em um vídeo do YouTube, eu teria resmungado sobre essas mistificações, grosseiras mesmo para padrões da TV e da Internet (sorry).

    A ficção científica é real agora. Modelos generativos de aprendizagem de máquina estão aqui, e a taxa com que eles estão melhorando é absolutamente irreal. Eu digo isso tendo um histórico de ceticismo quanto ao “hype” e às possibilidades dessa modalidade de AI. Vale a pena prestar atenção ao que eles são capazes de fazer, como estão se desenvolvendo, e ao impacto que eles terão na sociedade.

    Leitura recomendada

    https://arxiv.org/abs/2112.10752

    https://github.com/CompVis/stable-diffusion


    Reativei minha conta para twitar sobre essas coisas para o meu único seguidor. Siga @VoxLeone no Twitter e me ajude a conquistar o Brasil!

    Também fiz conta no Reddit, onde meu Karma é exatamente = 1. Siga u/VoxLeone!

    ‘Inteligência Artificial’ e o Futuro das Artes Digitais

    Eu leio os jornais. Eu vejo o ritmo do ‘progresso’. Eu entendo como esses novos modelos de aprendizado de máquina funcionam em um nível técnico e estou impressionado com a rapidez com que eles estão se desenvolvendo.

    artista-digital
    Imagem: Pexels.com

    Francamente, eu não espero que a arte digital feita por humanos (imagens, vídeos, filmes, música, texto) sobreviva mais uma década. O que espero é que pouca ou nenhuma arte digital seja vendida com lucro por artistas humanos daqui a dez anos, e a única razão pela qual não estendo esse raciocínio para mídias físicas como escultura ou arte de rua é que eu não sei se teremos robôs hábeis o suficiente para fazê-las – embora seja inevitável que robôs habilidosos surjam em algum momento, na duvidosa hipótese de que a civilização sobreviva.

    As pessoas frequentemente vão buscar o exemplo da pintura e da fotografia para defender a ideia de que inteligência artificial (IA) não vai realmente acabar com o mercado de arte, mas eu simplesmente não vejo esse exemplo como válido. A fotografia e a pintura sobreviveram porque são fundamentalmente diferentes e podem ser facilmente distinguidas, desde que seus respectivos criadores optem por se diferenciar.

    A arte da IA é diferente, porque seu propósito específico é replicar. Não importa o que os artistas humanos façam com a mídia digital, a IA sempre vai estar lá para engolir as mudanças de qualquer nova onda e aprender a replicá-las.

    O advento da fotografia nunca teve a intenção de matar a indústria da pintura. Contrariamente, esses algoritmos de IA, gestados nas grandes corporações de tecnologia, têm como objetivo manifesto matar a indústria da imagem.

    Sobre a Excelência na técnica

    Leonardo da Vinci não apenas pegou um pincel, compôs a Mona Lisa e se proclamou mestre. Ele construiu suas habilidades como aprendiz em oficinas, fazendo obras acessórias, figuras de fundo e encomendas menores. É esse trabalho que cria a oportunidade para que obras-primas aconteçam. Se esse ambiente desaparecer, o topo da elite artística será afetado. Existe algo único no equilíbrio entre ser ousado o suficiente para se destacar da multidão, mas ao mesmo tempo acessível o suficiente para um apelo mais amplo.

    No momento, os modelos de aprendizado de máquina ainda são fracos, mas já são fortes o suficiente para tirar 90% dos artistas digitais do mercado. Com o custo próximo de zero, as pessoas não vão mais reutilizar nada. Vão gerar algo novo para cada coisa que fizerem. Não tenho certeza se há algo que possa ser feito para evitar esse futuro. Penso que devemos começar reconhecer que muita coisa vai se perder nessa revolução. Também duvido que artifícios sociais como bolsas de estudo e programas de residência possam deter o avanço das máquinas simplesmente jogando dinheiro no problema.

    Otimistas

    Há um lado otimista nesta questão. Seus lugares-tenentes sustentam que não precisamos temer a arte da IA. Na verdade, os artistas podem até querer agradecer.

    Segundo os otimistas, há muito tempo os artistas sentem uma espécie de tédio por causa da falta de um caminho claro para a inovação ou para criação de algo “novo” e inspirador. As coisas tornaram-se obsoletas e excessivamente mercantilizadas, com músicos, fotógrafos, pintores, etc. muitas vezes confessando que o que eles criam não passa de recauchutagem de ideias desgastadas – admito que qualquer artista ligado na cena vai mesmo dizer que não há mais muita arte inspiradora.

    A IA essencialmente reorganiza motivos antigos de novas maneiras. É um dispositivo de permutação que mostra o estado da arte atual (na qual é baseado o treinamento dos modelos) aplicado a situações arbitrárias. Os artistas podem usá-lo como ferramenta para encontrar um espaço onde uma nova exploração seja possível e, finalmente, começar a criar arte inspiradora novamente.

    este-cara-nao-existe
    Imagem gerada no popular serviço Esta Pessoa Não Existe. É uma imagem criada com o uso de redes GAN – Generational Adversarial Network.

    Os otimistas ainda consideram que o que está sendo banalizado agora é apenas a transformação das obras mesmas em espaços de ideias digitalmente definíveis: crie uma nova ideia em arte, dê a uma máquina representações suficientes e ela pode gerar infinitamente novos trabalhos dentro desse espaço.

    A corrente otimista argumenta que certas coisas vão escapar à banalização. O que ainda não pode ser banalizado seria:

    1) Novos espaços de ideias. A IA é incapaz de gerar algo que possa ser definido como um novo movimento artístico.

    2) Novas mídias. Algo como Dall-E [ver nota no final] vai aparecer, mais cedo ou mais tarde, para gerar arquivos CAD. Contudo, há muitas expressões artísticas que não serão fisicamente reproduzíveis por um computador. As obras nessas mídias permanecerão valiosas ou até aumentarão de valor. E embora a IA possa gerar novas ideias nesses espaços, será necessário que haja pessoas que decidam se esforçar para executá-las.

    3) Curadoria. Decidir quais ideias (geradas por IA ou não) merecem atenção.

    Take final

    Comecei a investigar este assunto na década passada, e as evidências me sugerem que começaremos a ver todas as atividades humanas enfrentando um declínio salarial anual de 6 a 12% a partir de agora. Uma máquina já pode fazer trabalho humano bem o suficiente para substituí-lo ou substituir mais de 90% das pessoas no trabalho que elas fazem, deixando o resto brigando por migalhas.

    A parte criativa e sensível do seu trabalho, que uma máquina não pode fazer, pode parecer muito importante para você, mas o chefe do chefe do seu chefe provavelmente não se importa com isso, já que a mediocridade escalável é mais lucrativa do que qualquer “extra” que um humano possa oferecer.

    Na verdade, a já envelhecida queixa das empresas de que “existe-trabalho-mas-ninguém-está-qualificado” é uma grande balela. Os mesmos executivos que dizem isso estão espremendo seus gerentes de linha, ao não deixá-los contratar auxílio e forçá-los ao trabalho cada vez mais pesado.

    A tendência de longo prazo dos salários é de queda. Os mercados de trabalho não parecem mais se comportar como o da oferta e procura de bens. Nesse mercado as curvas não mais encontram equilíbrio. Elas divergem.

    Não se trata apenas de AI Art, e outras macaquices digitais. Estamos muito provavelmente caminhando para um colapso salarial generalizado e de base ampla em todo o mundo, e esse tipo de situação provavelmente resultará em um conflito global entre pessoas e capital, no qual a) todo um sistema socioeconômico é derrubado, ou b) a humanidade é lançada na escravidão da qual é improvável que se recupere.


    Nota: DALL·E é uma versão do GPT-3 [Generative Pre-trained Transformer – Transformador Generativo Pré- treinado] com bilhões de parâmetros, treinada para gerar imagens a partir de descrições de texto [ex: “ovelha a tocar piano em um navio”], usando um conjunto de dados de pares de texto-imagem. Ele tem um conjunto diversificado de recursos, incluindo a criação de versões antropomorfizadas de animais e objetos, combinando conceitos não relacionados de maneiras plausíveis, renderizando texto e aplicando transformações a imagens existentes.

    Leitura recomendadada

    https://arxiv.org/abs/2005.14165

    https://openai.com/blog/dall-e/

    O Futuro da AI é Luminoso (e analógico)

    Para concluir a Rápida Introdução à ‘Inteligência Artificial’, publico o post complementar, para apresentar o inovador chip ótico [ainda sem nome comercial] da start-up Lightmatter, contendo o chamado interferômetro Mach-Zehnderque, que promete elevar a computação de sistemas de aprendizagem de máquinas a um novo patamar.

    Imagem: iStock

    O aprendizado de máquina profundo, ou seja, redes neurais artificiais com muitas camadas ocultas, sempre nos fascina com soluções inovadoras para problemas do mundo real, cada vez em mais áreas, incluindo processamento de linguagem natural, detecção de fraude, reconhecimento de imagem e direção autônoma. As redes neurais ficam melhores a cada dia.

    Mas esses avanços têm um preço enorme nos recursos de computação e no consumo de energia. Portanto, não é de se admirar que engenheiros e cientistas da computação estejam fazendo grandes esforços para descobrir maneiras de treinar e operar redes neurais profundas com mais eficiência.

    Uma nova e ambiciosa estratégia que está fazendo o ‘début’ este ano é executar a computação de redes neurais usando fótons em vez de elétrons. A Lightmatter começará a comercializar no final deste ano seu chip acelerador de rede neural que calcula com luz. Será um refinamento do protótipo do chip Mars que a empresa exibiu em agosto passado.

    O protótipo MARS, instalado em uma placa

    Embora o desenvolvimento de um acelerador ótico comercial para aprendizado profundo seja uma conquista notável, a ideia geral de ‘computação com luz’ não é nova. Os engenheiros empregavam regularmente essa tática nas décadas de 1960 e 1970, quando os computadores digitais eletrônicos ainda não tinham capacidade para realizar cálculos complexos. Assim, os dados eram processados no domínio analógico, usando luz.

    Em virtude dos ganhos da Lei de Moore na eletrônica digital, a computação óptica nunca realmente pegou, apesar da ascensão da luz [fibras óticas] como veículo para comunicação de dados. Mas tudo isso pode estar prestes a mudar: a Lei de Moore, que durante décadas proporcionou aumentos exponenciais na capacidade dos chips eletrônicos, mostra sinais de estar chegando ao fim, ao mesmo tempo em que as demandas da computação de aprendizado profundo estão explodindo.

    Não há muitas escolhas para lidar com esse problema. Pesquisadores de aprendizagem profunda podem até desenvolver algoritmos mais eficientes, mas é difícil prever se esses ganhos serão suficientes. Essa é a razão da Lightmatter estar empenhada em “desenvolver uma nova tecnologia de computação que não dependa do transistor”.

    Fundamentos

    O componente fundamental no chip Lightmatter é um interferômetro Mach-Zehnder. Esse dispositivo ótico foi inventado em conjunto por Ludwig Mach e Ludwig Zehnder na década de 1890. Mas só recentemente esses dispositivos óticos foram miniaturizados a ponto de um grande número deles poder ser integrado em um chip e usado para realizar as multiplicações de matrizes envolvidas nos cálculos de rede neural.

    O interferômetro Mach-Zehnder é um dispositivo usado para determinar as variações relativas de deslocamento de fase entre dois feixes colimados derivados da divisão da luz de uma única fonte. É um dispositivo particularmente simples para demonstrar interferência por divisão de amplitude. Um feixe de luz é primeiro dividido em duas partes por um divisor de feixe e, em seguida, recombinado por um segundo divisor de feixe. Dependendo da fase relativa adquirida pelo feixe ao longo dos dois caminhos, o segundo divisor de feixe refletirá o feixe com eficiência entre 0 e 100%. – Gráfico: Vox Leone – Uso Permitido

    Esses feitos só se tornaram possíveis nos últimos anos devido ao amadurecimento do ecossistema de manufatura de fotônica integrada, necessário para fazer chips fotônicos para comunicações.

    O processamento de sinais analógicos transportados pela luz reduz os custos de energia e aumenta a velocidade dos cálculos, mas a precisão pode não corresponder ao que é possível no domínio digital. O sistema é 8-bits-equivalente. Isso por enquanto mantém o chip restrito a cálculos de inferência de rede neural – aqueles que são realizados depois que a rede foi treinada.

    Os desenvolvedores do sistema esperam que sua tecnologia possa um dia ser aplicada também ao treinamento de redes neurais. O treinamento exige mais precisão do que o processador ótico pode fornecer nesta etapa.

    A Lightmatter não está sozinha em busca da luz para cálculos de redes neurais. Outras startups que trabalham nesta linha são Fathom Computing, LightIntelligence, LightOn, Luminous e Optalysis.

    A Luminous espera desenvolver sistemas práticos em algum momento entre 2022 e 2025. Portanto, ainda teremos que esperar alguns anos para ver como essa abordagem vai evoluir. Mas muitos estão entusiasmados com as perspectivas, incluindo Bill Gates, um dos maiores investidores da empresa.

    Uma coisa é clara: os recursos de computação dedicados aos sistemas de inteligência artificial não podem continuar a crescer sustentavelmente na taxa atual, dobrando a cada três ou quatro meses. Os engenheiros estão ansiosos para utilizar a fotônica integrada para enfrentar esse desafio de construir uma nova classe de máquinas de computação drasticamente diferentes daquelas baseadas nos chips eletrônicos convencionais, que agora se tornam viáveis para fabricação. São dispositivos que no passado recente só podiam ser imaginados.

    Uma (muito) Rápida Introdução à ‘Inteligência Artificial’

    O poder de computação ao alcance das pessoas começou a crescer rapidamente, aos trancos e barrancos, na virada do milênio, quando as unidades de processamento gráfico (GPUs) começaram a ser aproveitadas para cálculos não gráficos, uma tendência que se tornou cada vez mais difundida na última década. Mas as demandas da computação de “Aprendizado Profundo” [Deep Learning] têm aumentado ainda mais rápido. Essa dinâmica estimulou os engenheiros a desenvolver aceleradores de hardware voltados especificamente para o aprendizado profundo [o que se conhece popularmente como ‘Inteligência Artificial’], sendo a Unidade de Processamento de Tensor (TPU) do Google um excelente exemplo.

    Ainda não temos uma Teoria da Mente, que possa nos dar uma base para a construção de uma verdadeira inteligência senciente. Aqui a distinção entre as disciplinas que formam o campo da Inteligência Artificial

    Aqui, descreverei resumidamente o processo geral do aprendizado de máquina, introduzindo uma abordagem muito diferente para este problema – o uso de processadores óticos para realizar a computação de uma rede neural com fótons em vez de elétrons, que será objeto do próximo post. Para entender como a ótica pode impulsionar este campo, precisamos saber um pouco sobre como os computadores executam cálculos de redes neurais.

    Visão geral

    Quase invariavelmente, os neurônios artificiais são ‘construídos’ [na verdade eles são virtuais] usando um software especial executado em algum tipo de computador eletrônico digital.

    Esse software fornece a um determinado neurônio da rede várias entradas e uma saída. O estado de cada neurônio depende da soma ponderada de suas entradas, à qual uma função não linear, chamada função de ativação, é aplicada. O resultado, a saída desse neurônio, torna-se então uma entrada para vários outros neurônios, em um processo em cascata.

    As camadas de neurônios interagem entre si. Cada círculo representa um neurônio, em uma visão muito esquemática. À esquerda (em amarelo) a camada de entrada. Ao centro, em azul e verde, as camadas ocultas, que refinam os dados, aplicando pesos variados a cada neurônio. À direita, em vermelho, a camada de saída, com o resultado final.

    Por questões de eficiência computacional, esses neurônios são agrupados em camadas, com neurônios conectados apenas a neurônios em camadas adjacentes. A vantagem de organizar as coisas dessa maneira, ao invés de permitir conexões entre quaisquer dois neurônios, é que isso permite que certos truques matemáticos de álgebra linear sejam usados ​​para acelerar os cálculos.

    Embora os cálculos de álgebra linear não sejam toda a história, eles são a parte mais exigente do aprendizado profundo em termos de computação, principalmente à medida que o tamanho das redes aumenta. Isso é verdadeiro para ambas as fases do aprendizado de máquina:

    • O treinamento – processo de determinar quais pesos aplicar às entradas de cada neurônio.
    • A inferência – processo deflagrado quando a rede neural está fornecendo os resultados desejados.
    Concepção do processo de treinamento de máquina, dos dados brutos, à esquerda, ao modelo completo.

    Matrizes

    O que são esses misteriosos cálculos de álgebra linear? Na verdade eles não são tão complicados. Eles envolvem operações com matrizes, que são apenas arranjos retangulares de números – planilhas, se preferir, menos os cabeçalhos de coluna descritivos que você encontra em um arquivo Excel típico.

    É bom que as coisas sejam assim, porque o hardware de um computador moderno é otimizado exatamente para operações com matriz, que sempre foram o pão com manteiga da computação de alto desempenho – muito antes de o aprendizado de máquina se tornar popular. Os cálculos matriciais relevantes para o aprendizado profundo se resumem essencialmente a um grande número de operações de multiplicação e acumulação, em que pares de números são multiplicados entre si e seus produtos somados.

    Ao longo dos anos, o aprendizado profundo foi exigindo um número cada vez maior dessas operações de multiplicação e acumulação. Considere LeNet, uma rede neural pioneira, projetada para fazer classificação de imagens. Em 1998, demonstrou superar o desempenho de outras técnicas de máquina para reconhecer letras e numerais manuscritos. Mas em 2012 o AlexNet, uma rede neural que processava cerca de 1.600 vezes mais operações de multiplicação e acumulação do que o LeNet, foi capaz de reconhecer milhares de diferentes tipos de objetos em imagens.

    Gráfico tridimensional ilustrando o processo de inferência, partindo de dados brutos dispersos (embaixo à direita) até o refinamento final (após muitas iterações de inferência), onde o resultado (ou predição) é obtido.

    Aliviar a pegada de CO2

    Avançar do sucesso inicial do LeNet para o AlexNet exigiu quase 11 duplicações do desempenho de computação. Durante os 14 anos que se passaram, a lei de Moore ditava grande parte desse aumento. O desafio tem sido manter essa tendência agora que a lei de Moore dá sinais de que está perdendo força. A solução de sempre é simplesmente injetar mais recursos – tempo, dinheiro e energia – no problema.

    Como resultado, o treinamento das grandes redes neurais tem deixado uma pegada ambiental significativa. Um estudo de 2019 descobriu, por exemplo, que o treinamento de um determinado tipo de rede neural profunda para o processamento de linguagem natural emite cinco vezes mais CO2 do que um automóvel durante toda a sua vida útil.

    Os aprimoramentos nos computadores eletrônicos digitais com certeza permitiram que o aprendizado profundo florescesse. Mas isso não significa que a única maneira de realizar cálculos de redes neurais seja necessariamente através dessas máquinas. Décadas atrás, quando os computadores digitais ainda eram relativamente primitivos, os engenheiros lidavam com cálculos difíceis como esses usando computadores analógicos.

    À medida que a eletrônica digital evoluiu, esses computadores analógicos foram sendo deixados de lado. Mas pode ser hora de seguir essa estratégia mais uma vez, em particular nestes tempos em que cálculos analógicos podem ser feitos oticamente de forma natural.

    No próximo post vou trazer o mais recente desenvolvimento em fotônica aplicada ao aprendizado de máquina – em uma arquitetura analógica! Estamos, sem dúvida, vivendo tempos interessantes neste campo promissor.

    Fonte de pesquisa: spectrum.ieee.org

    Algo Prático: Um Provador Virtual para o Varejo de Confecções

    Hoje vou me despir [trocadilho intencional] da pretensão intelectual- acadêmica para enfocar um assunto prático sobre desenvolvimento de sistemas.

    Eu tenho grande interesse no mercado de confecções e moda, em geral. Talvez pelo fato de ter uma clientela no setor, além de amigos e familiares envolvidos no negócio. Nosso estúdio de software já teve a oportunidade de criar inovações importantes para nossos clientes do setor de confecções, sempre com foco na interação e responsividade. Por essa razão, achei que seria interessante falar neste post sobre o sistema Revery AI. Queremos nos colocar como fornecedores dessa classe de tecnologia para o mercado brasileiro, empregando nossa expertise em manipulação de imagens, sistemas de aprendizado de máquina (AI) e soluções 3D.

    Imagem: iStock

    O aumento repentino das compras online por conta da pandemia de Covid-19 impôs desafios significativos aos varejistas de confecções. A incapacidade física de experimentar e visualizar as roupas tornou as compras menos interativas, contribuindo para baixas taxas de conversão e altas taxas de devolução, em comparação com as compras tradicionais. Os provadores virtuais como o que discutimos aqui tornam-se alternativas viáveis, nestes tempos infecciosos, para recriar, em certa medida, a experiência perdida de provar roupas pessoalmente. Existem muitas empresas desenvolvendo um provador virtual [inclusive a nossa]. O grande problema para sua implementação é a escalabilidade.

    Os sites de comércio eletrônico de confecções têm milhares, senão milhões de items em estoque – que chamaremos de Unidade(s) de Manutenção de Estoque (UME). Atualmente, o fluxo de trabalho para edição de conteúdo dos sites que vendem para esse segmento geralmente requer trabalho gráfico personalizado em software como o Photoshop e/ou software modelador em 3D, que são caros e requerem mão-de-obra especializada. Em contraste, o Revery AI aproveita a pesquisa de aprendizado de máquina [Machine Learning] para automatizar todo esse processo, resultando no primeiro provador virtual escalável que pode ser facilmente integrado a qualquer grande plataforma de e-commerce com milhões de UMEs.

    Aprendizado de Máquina

    Em vez de uma produção gráfica elaborada, em 3D, o sistema trabalha com imagens básicas. O objetivo é produzir visualizações precisas e realistas de roupas vestindo pessoas. Uma solução comum [e ingênua] para atualizar o conteúdo do site com novos items seria simplesmente copiar e colar a peça no modelo. Mas isso apresenta dois problemas.

    1) Se as poses e maneirismos do modelo-roupa forem incompatíveis, o copiar-colar não funcionará.

    2) Mesmo com poses ideais, copiar e colar não leva em consideração as interações peça-peça, peça-peça-modelo e também ignora a iluminação, as sombras, etc.

    Este sistema usa o aprendizado de máquina profundo [deep learning] para superar esses problemas. Para o problema 1), o Revery AI usa uma série de distorções, para deformar a imagem da roupa em uma forma aproximada à do corpo fazendo a pose apropriada. Isso difere das abordagens comuns de baixa tecnologia, que normalmente usam apenas uma única e limitada deformação/transformação de imagem.

    Para o problema 2), o sistema se baseia em um gerador de imagem que recebe as entradas relevantes (a imagem do modelo, imagem da roupa, pose, etc.) e retorna uma imagem realista de uma figura humana vestindo a roupa. O sistema produz melhorias significativas no tamanho, ajuste e caimento, em comparação com as técnicas costumeiras de baixa tecnologia, permitindo criar imagens realistas de qualquer modelo usando qualquer combinação de roupas. Para os interessados em detalhes técnicos adicionais, este link leva ao artigo original da pesquisa no site de pré-impressões Arxiv >> https://arxiv.org/abs/2003.10817

    Tela do Revery AI. O usuário seleciona a peça à direita e o software a renderiza no modelo virtual à esquerda. Note que o software faz os ajustes e transformações na peça para se adaptar realisticamente ao modelo. A peça foi fotografada normalmente em superfície plana.

    A abordagem de exibição de produtos e venda online adotada pelo Revery AI torna a integração com os varejistas muito mais fácil, porque requer apenas uma única imagem da peça de roupa em um fundo de cor uniforme. Todo o resto é integrado e resolvido pelo software. A equipe do Revery processa em torno de um milhão de imagens por semana. Em seguida, trabalha com o varejista para criar um ‘widget’ que possa ser facilmente integrado ao site da loja. A simplicidade desta solução significa que os clientes podem ter um provador virtual montado em poucos dias.

    O sistema já se integra com sucesso a vários varejistas de alto perfil no e-commerce de moda. Pesquisas com os clientes mostram que o provador virtual melhorou o engajamento médio dos usuários em 500% e, mais importante, proporcionou um aumento na taxa de conversão da venda também de 500%. Além disso, os resultados mostram aumentos no valor médio dos pedidos e diminuições nas taxas de devolução. Essa solução também atende vários casos de uso que vão além do provador virtual. Como a geração e manipulação de imagens está no centro do negócio, os clientes também têm interesse em usar o sistema para gerar imagens de sessões de fotos “in store”, para economizar nas despesas com os vários tipos de serviços fotográficos que utilizam.

    Embora a experimentação virtual baseada em imagens seja um campo de pesquisa ativo na academia, a transição da pesquisa para o produto não é trivial. Gerar imagens realistas e precisas de pessoas e roupas em alta fidelidade é mais difícil do que parece. Quaisquer imprecisões são simplesmente inaceitáveis ​​para os clientes. A start-up demorou um ano para obter resultados satisfatórios.

    Neste ponto, percebemos que esse exercício aparentemente acadêmico pode realmente ser uma ferramenta que usuários reais desejam usar. É uma grande inovação, capaz de trazer movimento para esse mercado tão significativo para a economia brasileira, especialmente neste momento de crescimento das compras online.

    Nosso estúdio [Vox Leone] se mantém sempre atualizado sobre essa linha de pesquisa, que acompanhamos de perto há quase duas décadas. Se você quiser saber mais sobre o sistema, ou experimentar a tecnologia em seu site ou plataforma, entre em contato. Esta é uma das nossas linhas de trabalho favoritas.

    Uma demonstração ao vivo pode ser vista e experimentada [em inglês] neste link: https://revery.ai/demo.html